
^ITUS L(|3GI(tl

Design Tools for Integrated
Asynchronous Electronic

Circuits

19 June 2003

Sponsored by
Defense Advanced Research Projects Agency

Microsystems Technology Office
ARPA Order K476/66

Issued by U.S. Army Aviation and Missile Command Under
Contract No. DAAH01-03-C-R021

Situs-TR-03-03

DISTRIBUTION STATEMENT A
Approved for Public Release

Distribution Unlimited 20030916 016
__v

REPORT DOCUMENTATION PAGE
Form Approved

0MB No. 0704-0188

1. AGENCY USE ONLY (Leave blank)

Davis Hiahway, Suite 1204, Arlington, VA 22202-4302, and to tlie Office of IWanagement and Budget, Paperworic Reduction Project (0704-0188), Wasliington, DC 20503.

2. REPORT DATE I 3. REPORT TYPE AND DATES COVERED
2i ^UiJ€ 2003 FIWAL x<i-ocro2 - zu-y^J^Joi

4. TITLE AND SUBTITLE

CAST: A SOire of <1A1> TOOLS, for

ASV/O C HROWOOS V/LSI
6. AUTHOR{S}

CATHfeR-lwe WOWGr

7. PERFORMING ORGANIZATION NAME(S} AND ADDRESS(ES}

«ilTUS LOGrlC.

PASA-DEMA, CA qcio6

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS{ES)

US.A^NVH- A\/i*tioi^Q4 MIssile. G>kv\W\Ana

11. SUPPLEMENTARY NOTES

5. FUNDING NUMBERS

l>AAHOI-oi-C-1^0X|

8. PERFORMING ORGANIZATION
REPORT NUMBER

Si+us-TR'»*S-o^

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

12a. DISTRIBUTION/AVAILABILITY STATEMENT

UNL-JMiTfeJ*

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

f^o^sitUitcy of <^ Suite of'n^{Jis^cia.\ CAXi+vaols fbr4^«-dtesJ^U\ op

VLSI W-te^ratea circoLi-ts , ^ooised o(A-*ket*chk<jto^«^ iVv^JA^^ed a.-<r Gj.(f#<i'

Si+UsU>^»c. u*Ul <lev/«.loC» O-Wci. cQVKWvc^ciAUz* a cotvA.bU--t«. sa.lt«. of+00(3

tool^c^ "^o +€-?-''A'^d olcn^olAstr^"^*- -H^^pprOAcU. Tke <dLe.SiJK flaw

14. SUBJECT TERMS
CAT> -Toots^ e"J>A tSdls, a.St^wcLrOKoii^i'Vi-fX, <?3>X ^

<Ji^.St3lAToolr, lo^it ^^1 0 <I6. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT _

UtJCLASs'irUr>

18. SECURITY CLASSIFICATION
OF THIS PAGE

UWCLACs'lFiep

19. SECURITY CLASSIFICATION
OF ABSTRAa

15. NUMBER OF PAGES

IS

20. LIMITATION OF ABSTRAa

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Design Tools for Integrated Asynchronous Electronic
Circuits

19 June 2003
Sponsored by

Defense Advanced Research Projects Agency
Microsystems Technology Office

ARPA Order K476/66

Issued by U.S. Army Aviation and Missile Command Under
Contract No. DAAH01-03-C-R021

CAST: A Suite of CAD Tools for Asynchronous VLSI

Alain J. Martin, PI
Situs Logic

1442, Lomita Drive
Pasadena, CA 91106

(626) 799-7830

19 June 2003

Eflfective date of Contract: 24 October 2002
Reporting period: Final
Contract Expiration Date: 24 June 2003
The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the oflBcial policies, either express or implied, of the Defense Advanced
Research Projects Agency or the US Government.
Approved for public release; distribution unlimited.

1. Summary
The objective of this Phase-I study was to demonstrate the feasibility of

a suite of industrial CAD tools for the design of high-performance, energy-
efficient, asynchronous VLSI circuits based on the Caltech technology. Situs
Logic's general strategy in the EDA-tools market is to develop and commer-
ciaUze a complete suite of CAD tools for the design of asynchronous, QDI,
VLSI systems including synthesis, analysis, simulation, verification, at the
logical and physical levels.

Situs has developed a business model for the commercialization of the
CAD tools, and has designed the prototype of the tool suite based on this
business model and the Caltech approach.

The market for asynchronous tools will not be at first the mainstream
market, but rather some "early adopters" designing low-volume high-profit
chips, for instance for defense or space applications. Inside the market seg-
ment of asynchronous VLSI tools, the competitive advantage pursued by
Situs is differentiation rather than cost leadership, even though the Situs
tools will be priced significantly below equivalent tools in the mainstream
EDA market.

The main technical activities and developments were directed towards
the design of a prototype tool-suite to test and demonstrate the feasibility
of the approach. Although the design flow is not entirely automated yet—
some steps still have to be preformed manually—the results of the effort are
very promising: The circuits synthesized with the prototype tool are easily
competitive with the state of the art.

The main difficulty for an inexperienced designer of asynchronous circuits
is at the logic-synthesis level since the absence of clock makes the logic syn-
thesis of asynchronous circuits very different. The Situs tools will hide this
difficulty by having the core part of the logic synthesis entirely automated.
Another difficult part of the synthesis is the decomposition of a large original
HDL description into a collection of modules amenable to hardware imple-
mentation. This procedure will also be entirely automated and, combined
with a powerful optimization step, will produce better solutions than what
most designers can do by hand.

The different programs of the suite will be structured so as to make
it possible for the designers to tailor the tools to their styles, needs, and
experiences, by carefully designing the interfaces in such a way that replacing
one tool with another should be easy.

Another major concern is that it doesn't do much good for the tools to
allow designers to synthesize 95% of their design if they get stuck on the
remaining 5%. In Phase II, the tools will be augmented with an extensive
tool-kit that will provide standard solutions for most (if not all) the unusual
technical problems that the tools cannot or should not solve.

For high-level description, the Situs tools will use the language CHP,
wich was developed and refined at Caltech over the last decade, rather than
VHDL or Verilog. However, an alternative will be provided in the form of a
subset of VHDL—and later the same for Verilog—that exactly implements
the constructs of CHP. This language is called CHDL. A user designing in
CHDL will be in the familiar environment of VHDL. The resulting code will
be translated in CHP at little cost. Prom then on, the design flow will be
the same.

The general framework of the Situs tool suite has been thoroughly investi-
gated and defined. The interfaces between tools and the declarative language
Cast, which ties the different representations of a design together, are being
designed in such a way as to allow the designer to customize the tools.

The effort expended so far can be summarized as follows. At the logic-
synthesis level, an automatic procedure exists to decompose any given CHP
or CHDL program into a network of small components. Also, the core of the
logic synthesis—the transformation from CHP to PRS—has been formalized.
At the simulation level, the framework of the Situs toolset {Cast) has been
defined and the interfaces have been delineated. A CHP simulator now ex-
ists, and a new method for mixed-level simulation or cosimulation has been
defined.

At the physical-design level, a standard-cell library has been defined and
built. The front-end of a cell generator (stackgen) has been developed, as
well as a preliminary placer and router. An extended version of the PRS
language, called XPRS, has been defined that contains information about
transistor ordering and sizing. XPRS makes it possible to layout a chip
without need to edit the layout manually.

2. Body of Report

2.1. MUestone/Task Status
In this section, the status of the project is reported and compared against

the baseline. The program is on schedule. Priority was momentarily given to
the physical design part of the project to support the Caltech PACC program
which is in the physical-layout phase, and to use a real design as testbed for
the tool development. The emphasis has now returned to the logic synthesis,
which is the most innovative part of the effort.

The effort expended on each task is as follows. At the logic synthesis level,
a new representation, CAST03, has been designed to tie together the different
representations of a design and the different hierarchies used to structure a
complex design. Also, the design of a tool implementing the DDD decompo-
sition procedure for logic synthesis is well under way. At the physical-design
level (the Situs back-end) the transformation from production-rule repre-
sentation to layout is more than two-thirds automated. A new production-
rule representation, XPRS, has been defined that contains information about
transistor ordering and sizing. XPRS is used to generate layout. A propri-
etary router has been developed, together with tools for cell generation and
placement.

CHDL, a subset of VHDL implementing the constructs of CHP, as an
alternative high-level language has been defined and developed: Designers
used to VHDL (or required to write in VHDL) can now use CHDL as a
high-level language. The CHDL code is automatically translated into CHP.

The next section gives a completed narrative of the different tasks men-
tioned above, together with the outstanding problems, and new problem
areas.

3. Narrative

3.1. Overview

The Situs toolset consists of high-level synthesis and decomposition tools
that manipulate high-level CHP descriptions as well as low-level tools for
translation of production-rule sets into layout, placement, and routing. The
Situs toolset provides several alternative paths for designers: two alternatives
are shown in the following figure—the standard Situs solution (described in
more detail below) and a different path, called syntax-directed compilation.

Figure 1: The Situs Toolset

3.2. The Situs Framework
The biggest challenge in EDA tools is that posed by the need to naan-

age very large designs. Every year it is the same story: designers are faced
with designing tomorrow's systems with today's or yesterday's systems. And
designs are getting ever larger; the day when a designer could have an en-
tire system in his head at one time is long gone. The only reasonable way
of handling the design process for large systems is to subdivide the process,
both horizontally (by decomposing a large system into smaller, independent
subsystems) and vertically (by adding more, smaller steps to the design pro-
cess so that at each step only a limited amount of information needs to be
in the designer's or design tool's memory). The catchword for this sort of
horizontal/vertical decomposition is hierarchy: a design can be thought of
as having levels of hierarchy with more and smaller pieces in each lower level
of the hierarchy.

The main promise of asynchronous design techniques is that they permit
designers to think of their systems in a hierarchical sense. This is not so easy
in clocked environments, where the ubiquitous presence of the clock breaks
the hierarchy and makes it necessary to perform key design and analysis steps
on a flattened representation. Moving away from flattened representations

and keeping all aspects of the design hierarchical is necessary to realize the
complete potential of asynchronous design techniques. It is not surprising
that existing design systems, which are optimized for representing clocked
designs, are inadequate for supporting the asynchronous design revolution.

3.2.1. Situs's design hierarchies

The Situs asynchronous toolset is built around a way of designing circuits
that consists of a sequence of systematic, provably correct transformations
that take the designer from an initial specification to a final layout geometry.
This sequence of transformations passes through a number of representations,
e.g., CHP, HSE, PRS, transistor netlists, and various representations of lay-
out geometries. Situs's own tools support several transformation paths, and
users are free to add their own, using their own tools or standard commercial
tools from other commercial CAD vendors. This sequence of transformations
is the entire design process: by recording the sequence of transformations,
one records the design process, and one can use this record to audit it. For
instance, hardware verification is the act of verifying that the representations
at different stages in the design process are equivalent—for instance, when
designing a microprocessor, a designer would want to check that the tran-
sistor circuits in fact compute the logic furictions he intended, which in turn
should implement the desired RTL, and so on. In the Situs flow, the design
task can be subdivided into smaller design tasks or continued in a sequence of
steps going from the first, high-level specification to the final GDS-II polygon
representation of the layout. The design process can thus be organized as a
design hierarchy.

One of the basic transformations performed on a hardware specification
is that of refinement. Refinement is the act of replacing a specification with
an implementation, and it involves moving from a general specification to a
specific implementation and from a high-level description to a more detailed
description. For instance, the specification "an adder" can be refined to "an
eight-bit adder" and further to "an eight-bit ripple-carry adder." Refinement
is well-known from the software-engineering world, where the inheritance en-
countered in object-oriented programming is a kind of refinement. A large
design goes through many levels of refinement, and the relationships between
the diflferent levels is hierarchical—perhaps the ALU is refined into something
containing an adder and a multiplier, and after that the adder is refined sep-
arately from the multiplier. Refinement thus induces a refinement hierarchy
on a design. The refinement hierarchy is more specific than the design hierar-

chy: whereas the design hierarchy simply ties together the steps taken by the
system designer, in whatever way the system designer may have derived the
pieces, the objects in the refinement hierarchy, such as the adders mentioned
above, obey formal rules that enable them to be substituted for each other in
particular ways. The objects in the design hierarchy do not necessarily obey
such rules; or if they do, the rules may not be practically expressible: there
is for instance no clear inheritance relationship between an ISA specification
and the specification of an adder used to build a system satisfying the ISA
specification.

Modern hardware systems are very large and getting larger. It has be-
come impossible for designers to think of a modern hardware system as a
single circuit; there is simply too much detail. Instead, a hierarchical repre-
sentation is usually used. For instance, a microprocessor consists of several
execution units, an instruction-fetch unit, an instruction cache, and so on; an
instruction-fetch unit consists of a few adders plus control circuitry, and so
on. This hierarchy, the instantiation hierarchy, is nested many levels deep.
The instantiation hierarchy is a concrete, essential part of the representation
of a hardware system, and it is important for design efficiency that tools be
able to handle it smoothly.

3.2.2. The CAST03 Language

Keeping track of the three hierarchies mentioned above—design, refine-
ment, and instantiation—is one of the main tasks of the Situs toolset. The
part of the system that does this is called CAST (the acronym originally stood
for "Caltech Asynchronous Synthesis Tools"). Several versions of CAST have
already been developed, most of them at Caltech. Each one of these versions
has represented a great advance over previous CAST systems, and they have
been used in the design of a large family of asynchronous chips, including
the early Caltech microprocessor and the Caltech MiniMIPS, as well as the
still larger chips designed at Fulcrum Microsystems, Inc. However, none of
the existing CAST systems has yet fulfilled the goal of properly tracking
the three hierarchies. A new CAST system that will correct this deficiency,
CAST03, is part of the Situs toolset.

The CAST03 system is inspired by prior work in hardware-representation
systems and notations. The main design issues in a hardware-representation
system are convenience, efficiency, and soundness. Convenience is of course
a major issue in a system that will be used by human designers; the kinds
of conveniences that users want in a hardware-representation system include

syntactic convenience (e.g., concise notation) and a high degree of param-
eterizability. Since hardware systems are extremely complex (more so the
closer one gets to the layout representation), efficiency is also a major issue;
it is widely accepted by VLSI designers that their tools will only run on large,
expensive server computers with the maximum memory installed. Finally,
soundness is extremely important: soundness refers to the degree to which
the design transformations can be tracked and audited and the degree to
which different levels of specification can be verified against each other. A
high level of soundness is necessary for the design advantages of asynchronous
design to be maximized. It is no surprise that the three goals of convenience,
efficiency, and soundness are generally at odds with each other.

No existing design environment simultaneously provides the level of con-
venience, efficiency, and soundness that asynchronous design techniques en-
able. This makes CAST03 a key part of the Situs tool suite. CAST03 unites
the goals by making judicious choices of features from existing design sys-
tems, and while the features of CAST03 are inspired by a variety of existing
design systems, both academic and industrial, no existing design environment
can describe asynchronous circuits as gracefully as Situs's.

3.3. The Situs Synthesis Tools

3.3.1. High-Level Synthesis

The first step in the Situs design flow is process decomposition, which
transforms sequential high-level descriptions of circuit behaviour into a sys-
tem of communicating modules. Each module is still expressed in a high-
level language and can be individually synthesized at lower levels. The goals
of process decomposition are to expose concurrency and facilitate low-level
synthesis while producing a system with an acceptable throughput but not a
surfeit of communications. (In most QDI systems, the computation of values
consumes significantly less energy than the communication of these values.)

Previous approaches to automated process decomposition have been syntax-
directed and unable to produce modules small enough to be implemented as
the fine-grain pipeline stages (precharge half-buffers, or PCHBs) used in the
high-performance MiniMIPS and Lutonium asynchronous microprocessors.
The Situs tool fiow features data-driven decomposition (DDD), the first de-
composition method to target the fast PCHB asynchronous circuit family.
Before DDD, designers wishing to create high-throughput asynchronous sys-
tems could spend weeks creating an energy-efficient decomposition to meet
the desired throughput, and even after that effort, the results would vary

greatly depending designer experience and intuition. The decision to make
all intermediate stages in the Situs tool chain human-readable gives users
the freedom to choose between DDD, syntax-directed decomposition, or per-
forming the process decomposition by hand. The remainder of this section
focuses on the algorithms and tools for DDD.

Data-Driven Decomposition
DDD performs data-dependency analysis on the sequential CHP and then

decomposes the program into a system containing one module for each vari-
able. The modules contain both the computation of the variable (encap-
sulating all assignments to that variable in the original program) and new
intermodule communications which read in values of other variables and send
out the newly computed value. (External output channels that appear in the
original sequential CHP are considered special variables and are decomposed
into their own modules.) By considering the flow of data instead of the syn-
tax of the original program, DDD eliminates unnecessary synchronization in
the system.

When this analysis and decomposition is performed in isolation, the new
modules are not guaranteed to fit into the CHP template for PCHB cir-
cuits. DDD decomposes any deterministic CHP program into a system of
PCHB-implementable modules by first rewriting the sequential program so
that every variable is assigned a value at most once during the execution of
an iteration of the main loop. This transformation to dynamic single assign-
ment (DSA) form may involve splitting variables into new ones, eliminating
inner loops, and adding assignments to the ends of guarded commands (i.e.,
selection statement branches).

After DSA conversion, data-dependency analysis and decomposition, DDD
has created a working concurrent system where every module can be im-
plemented by a PCHB circuit. The decomposition may have gone too far
though—modules may be smaller than is necessary to fit the physical and per-
formance constraints placed on the size of PCHBs. The last stage of DDD is
therefore to cluster the DSA modules into larger modules to improve energy
(reducing the number of communications in the "system) and performance
(cutting forward latency while still running at the desired throughput). De-
composition is followed by some recomposition so that the user can prioritize
which metrics are most important in terms of the performance of the final
system.

Clustering is implemented in two phases. In the first phase, DSA mod-
ules along the critical path of a system are repeatedly clustered in series
until they are too large to implemented as single PCHB circuits. The second
phase employs a global optimization heuristic to cluster modules in paral-
lel while adding slack-matching buffers to keep the entire system running
at the desired throughput. The final output is a concurrent system where
communicating modules may implement the computations of one or multiple
variables, or may be simple buflTers inserted to improve system performance.
All modules fit the PCHB circuit template.

Tools
In Phase I, we created tools that convert deterministic CHP programs into

DSA form, analyze the data dependencies in a DSA program and output a
system of CHP modules equivalent to the original sequential specification.
These tools implement the basic algorithms comprising the first three stages
of DDD, but do not incorporate all of the features envisioned for the final
tool. For example, input CHP cannot yet contain nested loops (which, ac-
tually, are rare in practical circuits), and conditionality is not yet allowed
in most intermodule communications introduced by decomposition. These
tools have been successfully tested on various programs, including the com-
plex Instruction Fetch program used in the Lutonium (asynchronous 8051
microcontroller). A tool that implements the final clustering stage of DDD
is currently in development.

3.3.2. The Situs Back-End: Production Rules to Layout

The Situs toolset takes the Production Rule Set (PRS) as the boundary
between logical and physical design; production rules are the target of the
logical design and the specification for the physical design. The physical de-
sign in the Situs flow is different in many ways from a traditional synchronous
physical-design flow: many optimizations are possible at the circuit level, and
even at the layout level, that depend on information from the logical-design
level. For instance, facts such as "nodes x and y can never both be true at
the same time" can be used in order to perform circuit and layout optimiza^
tions. A tighter integration of the tools than is seen in standard tool flows is
therefore desirable, and the Situs physical tools provide this.

Low-level production-rule representation: XPRS
The physical tools start with a production-rule set. This is a purely logi-

cal specification, and it is not sufficient for driving the physical design tools.
In order to provide a specific enough (but not over-specific) description of
the system, the Situs toolset uses a new representation called the Extended-
Production-Rule Set (XPRS). This representation specifies transistor-gate
ordering and transistor-gate widths, but it does not specify the complete cir-
cuit topology, nor does it specify any other geometry information. The XPRS
notation is ideal for transistor sizing and it is also ideal for human-produced
low-level descriptions: using XPRS, a designer can specify all relevant details
about an asynchronous circuit implementation without having to edit actual
chip layout directly.

The introduction of XPRS subdivides what was formerly one task (sizing,
gate ordering, and specification of the netlist) into two tasks (sizing and gate
ordering on the one hand and specification of the netlist on the other). This
is in line with the Situs philosophy that each design tool be simple and
interchangeable and that it can be overridden by human input.

Because XPRS is used for sizing, the Situs tools convert the standard
PRS into XPRS as the first step in the physical-design flow. This conversion
is done in one of three ways:

• Automatically through gate matching.

• Automatically through XPRS generation from PRS.

• Manually or by logical-design tools.

The three ways are used as follows: the automatic methods are used when
a PRS is given. First of all, gate matching is performed: the Situs system is
able to match a given PRS against a gate library whose cells are described in
XPRS—in this case, the presence of a cell in the gate library is taken to mean
that the transistor-gate ordering is arbitrary, and logically equivalent cells
are matched against the given PRS. Secondly, remaining PRS are converted
by a special XPRS generator: this generator makes the decisions regarding
transistor-gate ordering and gate sharing; this is the least preferred approach
because the XPRS generator has to be conservative about its designs in order
to guarantee that they function properly. The final method of generating
XPRS is the simplest: the user simply specifies the gate ordering. Normally,
however, the "user" is a higher-level tool in the Situs logical-design suite; this
tool will have the necessary information to pick a reasonable gate ordering
and sharing.

10

Placement and routing
Placement and routing are the final steps in the physical-design flow. The

Situs toolchain is extremely flexible with regard to cell placement. Cells
can either be placed manually by the designer by leaving the appropriate
directives in the CAST03 code, or the placement can be done automatically.
If it is done automatically, special directives can still be used in order to
perform datapath placement—the regularity of a datapath means that extra
information is available in order to optimize the routes. The CAST03 system
makes it easy for the designer to specify this extra information.

Routing is performed by a proprietary Situs router. The Situs router
routes nets one at a time, it supports rip-up-and-reroute for batch mode
"hands-off"" routing, and it works with all standard ASIC processes. It fur-
thermore incorporates an efficient approximate Steiner-tree router (based on
minimum spanning trees) for routing nets that connect more than two points
together, which is important for asynchronous circuits because it is not un-
usual for circuit nodes fan out to several dozen transistor gates. The Situs
router is unique in that it can easily handle hand-drawn custom layout with-
out special directives telling it where to connect to the layout. The Situs
router is also "opportunist" router that will connect anywhere it can on a
net. This improves routability because the router is able to connect to the
layout in more places than a standard router could, and more importantly,
it makes it very easy to combine standard cells with hand-drawn layout, in
keeping with the Situs designer-assisted compilation philosophy.

3.4. Future Plans

Phase I was used to design a prototype of an EDA toolset for asyn-
chronous VLSI design based on the Caltech methodology, and to define a
product from a business and marketing point of Adew. The toolset can al-
ready be demonstrated on a reasonably large part of a system with excellent
results compared to the state of the art.

In Phase II, the prototype will be turned into an industrial-strength
toolset. An a-version will be ready by the end of the first year for use
by a small group of early adopters, and a ^-version by the end of Phase II.
Situs is eager to put the tools in the hands of industrial users outside of the
async research community as soon as possible to get feedback from them, as
it is difficult for the developers to foresee what will be the main stumbling
blocks for such users.

A new transistor-sizing algorithm has been developed at Caltech, which

11

Situs will implement and integrate into the tool suite in Phase II. The op-
timization metric used by the algorithm is Et^ where n can be chosen by
the designer so as to fix the desired tradeoff between energy E and delay t.
(Usually, n = 2.)

The only important aspect of the design flow that has not addressed in
Phase I is testing. Although some members of the Situs team have con-
tributed the first results on testing of asynchronous circuits, it would be
convenient to leave the development of a systematic testing method to an-
other group. However, an integrated approach as the one proposed by Situs
may require that Situs develop their own testing procedure.

Situs will also be an early industrial user of the tools since we intend to
be a design house as well as an EDA vendor. It has been awarded an SBIR
Phase I contract to investigate the potential radiation-hardness advantages
of asynchronous VLSI, which will require the design of experimental systems.
Situs will also collaborate with Caltech, Cornell, and ISI, (and possibly other
DoD prime contractors) inside the DARPA CLASS program. Situs will pro-
vide the EDA tools for the project and may be a subcontractor for some of
the designs.

The marketing strategy will follow the well-known technology adoption
life cycle defined for discontinuous innovations. The tools will first be offered
to the "innovators" (or "technology enthusiasts") and the "early adopters"
(or "visionaries")—at this point, it is difficult to differentiate the two cat-
egories of customers. Among them will be the async startups like Fulcrum
Microsystems, small high-technology companies like Myricom and Tensil-
ica, who know and appreciate the technology. One may also include in this
class some defense contractors in the DARPA community and some small
skunkworks groups inside large corporations. Such groups exist inside Intel,
IBM, Sun, Apple, and others.

According to modern studies in the marketing of high technology, the
difficult step is the next one, when we reach to the next category of customers
called the "early majority" or "pragmatists." Situs hopes to turn the small
insider groups within large corporations and the defense contractors into our
early majority. In order to do so, it is necessary to have established Situs as
the market leader in async tools by then.

3.5. Contract Delivery Status

On schedule.

12

3.6. Report Preparers

The report was prepared by Alain J. Martin, PI, Mika Nystrom, and
Catherine G. Wong.

13

